O saneamento é um procedimento utilizado para se analisar a dispersão dos dados da amostra e, por consequência, homogeneizá-la se for necessário; nesse etapa do processo de avaliação, a partir de critérios objetivos previamente estabelecidos, identificam-se os pontos atípicos, ou seja, eventuais elementos estranhos à massa de dados (NBR 14653-2:2011, item 3.48); como efeito do saneamento, teremos uma amostra mais homogênea, com um coeficiente de variação menor.

O saneamento pode ser feito a partir do critério de Chauvenet: calcula-se o intervalo de valores admissíveis e se exclui o elemento que ultrapassar os limites desse intervalo.

Por fim, analisa-se cada item amostra contra os limites do intervalo, excluindo-se aquele que os extrapolar.

 \qquad \qquad d_i = \left | \dfrac{x_i - \overline{x}}{s} \right |

 

 \begin{tabular}{llcl} Onde \colon &  & & \\ & d_i & = & módulo do valor \textsl{d} de cada item da amostra \\ & x_i & = & item da amostra \\ & \overline{x} & = & média da amostra \\ & s & = & desvio-padrão da amostra \\ & & & \\ \end{tabular} \indexspace {Se d_i > d_{crítico}}, \quad então\ o\ elemento\ \textsl{i}\ é\ um\ ponto\ atípico\ (\ \textsl{outlier}\ ).

 

O valor  d_{crítico} é calculado pelas seguintes equações:

 

 \begin{array}{ll}  & Pr ( X \ge \bar{x} + d_i) + Pr ( X \le \bar{x} - d_i)  < \dfrac{1}{2n} \\ & \\   &  \int\limits_{\bar{x} + d}^{\infty} \mathcal{N} (x ; \bar{x}, s) dx + \int\limits_{- \infty}^{\bar{x} - d} \mathcal{N} (x ; \bar{x}, s) dx < \dfrac{1}{2n} \\ & \\ & 1 - erf \left (      \dfrac{d_i}{\sqrt{2} s} \right ) < \dfrac{1}{2n} \\ & \\ & n \cdot erfc \left (      \dfrac{d_i}{\sqrt{2} s} \right ) < \dfrac{1}{2} \\ & \\ Sendo\ que:\  & erf(x)  = \dfrac{2}{\sqrt{\pi}}  \int\limits_{0}^{x} e^{- t^2} dt \\ & \\  & erfc(x) = 1- erf(x) \\ & \\ \end{array}

 

Caso mais de um elemento ultrapasse os limites do intervalo, exclui-se aquele que mais se distanciar da média do conjunto, um por vez; após se faz nova análise. 

Os limites do intervalo são calculados pelo número de desvios-padrão admissíveis, o qual varia em função do tamanho da amostra. Na tabela de valores tabelados,  \textsl{n} representa o tamanho da amostra: Tabela dos valores críticos do critério de Chauvenet.

A cada etapa de saneamento, reduzem-se a dispersão dos dados e, por consequência, o coeficiente de variação. O exemplo abaixo é continuidade da homogeneização apresentada na página: Homogeneização por fatores.

Na primeira etapa do saneamento, temos a seguinte situação:

 

\begin{tabular}{crrrr}\multicolumn{1}{c}{\textbf{Item da amostra}} & \multicolumn{1}{c}{\textbf{Valor unitário}} & \multicolumn{1}{c}{\textbf{Resultado da análise}} & \multicolumn{1}{c}{\textbf{Extrapolação dos limites}} & \multicolumn{1}{c}{\textbf{Item a ser excluído}} \\   & \multicolumn{1}{c}{\textbf{homogeneizado}} & & \multicolumn{1}{c}{\textbf{do intervalo}} & \\ \hline1 & 119,28 & Aceito & ~ & \\ \hline2 & 120,06 & Aceito & ~ & \\ \hline3 & 122,22 & Aceito & ~ & \\ \hline4 & 134,76 & Rejeitado & 134,76 & Excluir o item \\ \hline5 & 121,16 & Aceito & ~ & \\ \hline6 & 122,08 & Aceito & ~ & \\ \hline7 & 120,90 & Aceito & ~ & \\ \hline8 & 119,66 & Aceito & ~ & \\ \hline9 & 122,18 & Aceito & ~ & \\ \hline10 & 122,85 & Aceito & ~ & \\ \hline11 & 122,00 & Aceito & ~ & \\ \hline12 & 123,25 & Aceito & ~ & \\ \hline13 & 122,17 & Aceito & ~ & \\ \hline14 & 119,04 & Aceito & ~ & \\ \hline15 & 122,70 & Aceito & ~ & \\ \hline16 & 123,37 & Aceito & ~ & \\ \hline17 & 120,12 & Aceito & ~ & \\ \hline18 & 122,04 & Aceito & ~ & \\ \hline19 & 121,16 & Aceito & ~ & \\ \hline20 & 120,94 & Aceito & ~ & \\ \hline21 & 121,03 & Aceito & ~ & \\ \hline22 & 122,12 & Aceito & ~ & \\ \hline23 & 120,75 & Aceito & ~ & \\ \hline24 & 120,70 & Aceito & ~ & \\ \hline25 & 119,48 & Aceito & ~ & \\ \hline26 & 121,50 & Aceito & ~ & \\ \hline27 & 121,52 & Aceito & ~ & \\ \hline28 & 122,82 & Aceito & ~ & \\ \hline29 & 120,15 & Aceito & ~ & \\ \hline30 & 119,75 & Aceito & ~ & \\ \hline31 & 118,77 & Aceito & ~ & \\ \hline32 & 119,03 & Aceito & ~ & \\ \hline33 & 119,94 & Aceito & ~ & \\ \hline34 & 120,26 & Aceito & ~ & \\ \hline35 & 121,09 & Aceito & ~ & \\ \hline36 & 122,11 & Aceito & ~ & \\ \hline37 & 119,42 & Aceito & ~ & \\ \hline38 & 122,75 & Aceito & ~ & \\ \hline39 & 122,53 & Aceito & ~ & \\ \hline40 & 122,27 & Aceito & ~ & \\ \hline41 & 120,99 & Aceito & ~ & \\ \hline42 & 121,43 & Aceito & ~ & \\ \hline~ & ~ & ~ & ~ & \\ ~ & ~ & ~ & ~ & \\ ~ & \multicolumn{3}{c}{\textbf{Limites do intervalo}} ~ & \\ ~ & ~ & ~ & ~ & \\ ~ & \multicolumn{1}{l}{Média  } & ~ & 121,49 & \\ \hline~ & \multicolumn{1}{l}{Desvio-padrão ( s )} & ~ & 2,45 & \\ \hline~ & \multicolumn{1}{l}{Coeficiente de variação ( c_v )} & ~ & 2,01\% & \\ \hline~ & \multicolumn{1}{l}{Número de elementos} & ~ & 42 & \\ \hline~ & \multicolumn{1}{l}{Coeficiente tabelado ( d_s )} & ~ & 2,514955 & \\ \hline~ & ~ & ~ & ~ & \\ ~ & \multicolumn{3}{c}{\textbf{Limites inferior e superior}} ~ & \\ ~ & ~ & ~ & ~ & \\ ~ & \multicolumn{1}{l}{l_{inf} = média  - ( s \cdot d_s )} ~ & ~ & 115,33 & \\ \hline~ & \multicolumn{1}{l}{l_{sup} = média  + ( s \cdot d_s )} & ~ & 127,64 & \\ \hline\end{tabular}

 

 

Nessa etapa, a dispersão de dados pode ser demonstrada com o seguinte gráfico:

 

O quarto item extrapolou o limite superior, sendo portanto um ponto atípico que deverá ser excluído do conjunto de dados.

Passamos, então, para segunda etapa do saneamento, onde temos a seguinte situação:

 

 \begin{tabular}{crrrr}\multicolumn{1}{c}{\textbf{Item da amostra}} & \multicolumn{1}{c}{\textbf{Valor unitário}} & \multicolumn{1}{c}{\textbf{Resultado da análise}} & \multicolumn{1}{c}{\textbf{Extrapolação dos limites}} & \multicolumn{1}{c}{\textbf{Item a ser excluído}} \\   & \multicolumn{1}{c}{\textbf{homogeneizado}} & & \multicolumn{1}{c}{\textbf{do intervalo}} & \\ \hline 1 & 119,28 & Aceito & ~ & \\ \hline2 & 120,06 & Aceito & ~ & \\ \hline3 & 122,22 & Aceito & ~ & \\ \hline4 &  &  &  &  \\ \hline5 & 121,16 & Aceito & ~ & \\ \hline6 & 122,08 & Aceito & ~ & \\ \hline7 & 120,90 & Aceito & ~ & \\ \hline8 & 119,66 & Aceito & ~ & \\ \hline9 & 122,18 & Aceito & ~ & \\ \hline10 & 122,85 & Aceito & ~ & \\ \hline11 & 122,00 & Aceito & ~ & \\ \hline12 & 123,25 & Aceito & ~ & \\ \hline13 & 122,17 & Aceito & ~ & \\ \hline14 & 119,04 & Aceito & ~ & \\ \hline15 & 122,70 & Aceito & ~ & \\ \hline16 & 123,37 & Aceito & ~ & \\ \hline17 & 120,12 & Aceito & ~ & \\ \hline18 & 122,04 & Aceito & ~ & \\ \hline19 & 121,16 & Aceito & ~ & \\ \hline20 & 120,94 & Aceito & ~ & \\ \hline21 & 121,03 & Aceito & ~ & \\ \hline22 & 122,12 & Aceito & ~ & \\ \hline23 & 120,75 & Aceito & ~ & \\ \hline24 & 120,70 & Aceito & ~ & \\ \hline25 & 119,48 & Aceito & ~ & \\ \hline26 & 121,50 & Aceito & ~ & \\ \hline27 & 121,52 & Aceito & ~ & \\ \hline28 & 122,82 & Aceito & ~ & \\ \hline29 & 120,15 & Aceito & ~ & \\ \hline30 & 119,75 & Aceito & ~ & \\ \hline31 & 118,77 & Aceito & ~ & \\ \hline32 & 119,03 & Aceito & ~ & \\ \hline33 & 119,94 & Aceito & ~ & \\ \hline34 & 120,26 & Aceito & ~ & \\ \hline35 & 121,09 & Aceito & ~ & \\ \hline36 & 122,11 & Aceito & ~ & \\ \hline37 & 119,42 & Aceito & ~ & \\ \hline38 & 122,75 & Aceito & ~ & \\ \hline39 & 122,53 & Aceito & ~ & \\ \hline40 & 122,27 & Aceito & ~ & \\ \hline41 & 120,99 & Aceito & ~ & \\ \hline42 & 121,43 & Aceito & ~ & \\ \hline~ & ~ & ~ & ~ & \\ ~ & ~ & ~ & ~ & \\ ~ & \multicolumn{3}{c}{\textbf{Limites do intervalo}} ~ & \\ ~ & ~ & ~ & ~ & \\ ~ & \multicolumn{1}{l}{Média } & ~ & 121,16 & \\ \hline~ & \multicolumn{1}{l}{Desvio-padrão ( s )} & ~ & 1,27 & \\ \hline~ & \multicolumn{1}{l}{Coeficiente de variação ( c_v )} & ~ & 1,05\% & \\ \hline~ & \multicolumn{1}{l}{Número de elementos} & ~ & 41 & \\ \hline~ & \multicolumn{1}{l}{Coeficiente tabelado ( d_s )} & ~ & 2,506447 & \\ \hline~ & ~ & ~ & ~ & \\ ~ & \multicolumn{3}{c}{\textbf{Limites inferior e superior}} ~ & \\ ~ & ~ & ~ & ~ & \\ ~ & \multicolumn{1}{l}{l_{inf} = média  - ( s \cdot d_s )} ~ & ~ & 117,97 & \\ \hline~ & \multicolumn{1}{l}{l_{sup} = média  + ( s \cdot d_s )} & ~ & 124,36 & \\ \hline\end{tabular}

 

 

A dispersão dos dados diminuiu e isso pode ser comprovado objetivamente pela análise do coeficiente de variação ( cv ), que foi reduzido.

Todos os elementos encontram-se dentro dos limites do intervalo, conforme pode ser visualizado no gráfico abaixo:

 

Todos os elementos estão contidos dentro dos limites do intervalo; portanto, encerra-se o saneamento.

 

 

 \begin{tabular}{|r|r|r|r|r|r|r|r|r|r|} \multicolumn{10}{c}{\textbf{Critério de Chauvenet - valores específicos do valor d/s_{(crítico)}}} \\ \hline\textsl{n} & d/s_{(crítico)} & \textsl{n} & d/s_{(crítico)} & \textsl{n} & d/s_{(crítico)} & \textsl{n} & d/s_{(crítico)} & \textsl{n} & d/s_{(crítico)} \\ \hline1 & 0,674490 & 201 & 3,024850 & 401 & 3,227933 & 601 & 3,341941 & 801 & 3,420866 \\ \hline2 & 1,150349 & 202 & 3,026351 & 402 & 3,228645 & 602 & 3,342403 & 802 & 3,421206 \\ \hline3 & 1,382994 & 203 & 3,027844 & 403 & 3,229356 & 603 & 3,342863 & 803 & 3,421545 \\ \hline4 & 1,534121 & 204 & 3,029328 & 404 & 3,230064 & 604 & 3,343323 & 804 & 3,421883 \\ \hline5 & 1,644854 & 205 & 3,030805 & 405 & 3,230771 & 605 & 3,343782 & 805 & 3,422221 \\ \hline6 & 1,731664 & 206 & 3,032274 & 406 & 3,231476 & 606 & 3,344240 & 806 & 3,422559 \\ \hline7 & 1,802743 & 207 & 3,033736 & 407 & 3,232179 & 607 & 3,344698 & 807 & 3,422896 \\ \hline8 & 1,862732 & 208 & 3,035189 & 408 & 3,232880 & 608 & 3,345154 & 808 & 3,423232 \\ \hline9 & 1,914506 & 209 & 3,036636 & 409 & 3,233579 & 609 & 3,345610 & 809 & 3,423568 \\ \hline10 & 1,959964 & 210 & 3,038074 & 410 & 3,234277 & 610 & 3,346065 & 810 & 3,423904 \\ \hline11 & 2,000424 & 211 & 3,039506 & 411 & 3,234972 & 611 & 3,346519 & 811 & 3,424239 \\ \hline12 & 2,036834 & 212 & 3,040929 & 412 & 3,235666 & 612 & 3,346972 & 812 & 3,424574 \\ \hline13 & 2,069902 & 213 & 3,042346 & 413 & 3,236358 & 613 & 3,347425 & 813 & 3,424909 \\ \hline14 & 2,100165 & 214 & 3,043756 & 414 & 3,237048 & 614 & 3,347877 & 814 & 3,425243 \\ \hline15 & 2,128045 & 215 & 3,045158 & 415 & 3,237737 & 615 & 3,348328 & 815 & 3,425576 \\ \hline16 & 2,153875 & 216 & 3,046553 & 416 & 3,238423 & 616 & 3,348778 & 816 & 3,425909 \\ \hline17 & 2,177923 & 217 & 3,047942 & 417 & 3,239108 & 617 & 3,349227 & 817 & 3,426242 \\ \hline18 & 2,200411 & 218 & 3,049323 & 418 & 3,239791 & 618 & 3,349676 & 818 & 3,426574 \\ \hline19 & 2,221520 & 219 & 3,050697 & 419 & 3,240473 & 619 & 3,350124 & 819 & 3,426906 \\ \hline20 & 2,241403 & 220 & 3,052065 & 420 & 3,241152 & 620 & 3,350571 & 820 & 3,427237 \\ \hline21 & 2,260189 & 221 & 3,053426 & 421 & 3,241830 & 621 & 3,351017 & 821 & 3,427568 \\ \hline22 & 2,277988 & 222 & 3,054781 & 422 & 3,242506 & 622 & 3,351463 & 822 & 3,427899 \\ \hline23 & 2,294895 & 223 & 3,056128 & 423 & 3,243180 & 623 & 3,351908 & 823 & 3,428229 \\ \hline24 & 2,310991 & 224 & 3,057470 & 424 & 3,243853 & 624 & 3,352352 & 824 & 3,428558 \\ \hline25 & 2,326348 & 225 & 3,058804 & 425 & 3,244524 & 625 & 3,352795 & 825 & 3,428888 \\ \hline26 & 2,341027 & 226 & 3,060133 & 426 & 3,245193 & 626 & 3,353237 & 826 & 3,429216 \\ \hline27 & 2,355084 & 227 & 3,061455 & 427 & 3,245861 & 627 & 3,353679 & 827 & 3,429545 \\ \hline28 & 2,368567 & 228 & 3,062770 & 428 & 3,246527 & 628 & 3,354120 & 828 & 3,429873 \\ \hline29 & 2,381519 & 229 & 3,064080 & 429 & 3,247191 & 629 & 3,354560 & 829 & 3,430200 \\ \hline30 & 2,393980 & 230 & 3,065383 & 430 & 3,247854 & 630 & 3,355000 & 830 & 3,430527 \\ \hline31 & 2,405983 & 231 & 3,066680 & 431 & 3,248515 & 631 & 3,355438 & 831 & 3,430854 \\ \hline32 & 2,417559 & 232 & 3,067971 & 432 & 3,249174 & 632 & 3,355876 & 832 & 3,431180 \\ \hline33 & 2,428737 & 233 & 3,069256 & 433 & 3,249831 & 633 & 3,356314 & 833 & 3,431506 \\ \hline34 & 2,439542 & 234 & 3,070536 & 434 & 3,250487 & 634 & 3,356750 & 834 & 3,431831 \\ \hline35 & 2,449998 & 235 & 3,071809 & 435 & 3,251142 & 635 & 3,357186 & 835 & 3,432156 \\ \hline36 & 2,460124 & 236 & 3,073076 & 436 & 3,251795 & 636 & 3,357621 & 836 & 3,432481 \\ \hline37 & 2,469942 & 237 & 3,074338 & 437 & 3,252446 & 637 & 3,358055 & 837 & 3,432805 \\ \hline38 & 2,479467 & 238 & 3,075594 & 438 & 3,253095 & 638 & 3,358489 & 838 & 3,433129 \\ \hline39 & 2,488717 & 239 & 3,076844 & 439 & 3,253743 & 639 & 3,358922 & 839 & 3,433452 \\ \hline40 & 2,497705 & 240 & 3,078088 & 440 & 3,254389 & 640 & 3,359354 & 840 & 3,433775 \\ \hline41 & 2,506447 & 241 & 3,079327 & 441 & 3,255034 & 641 & 3,359785 & 841 & 3,434097 \\ \hline42 & 2,514955 & 242 & 3,080560 & 442 & 3,255677 & 642 & 3,360216 & 842 & 3,434420 \\ \hline43 & 2,523240 & 243 & 3,081788 & 443 & 3,256319 & 643 & 3,360646 & 843 & 3,434741 \\ \hline44 & 2,531313 & 244 & 3,083010 & 444 & 3,256959 & 644 & 3,361075 & 844 & 3,435063 \\ \hline45 & 2,539185 & 245 & 3,084227 & 445 & 3,257598 & 645 & 3,361503 & 845 & 3,435383 \\ \hline46 & 2,546864 & 246 & 3,085439 & 446 & 3,258235 & 646 & 3,361931 & 846 & 3,435704 \\ \hline47 & 2,554361 & 247 & 3,086645 & 447 & 3,258870 & 647 & 3,362358 & 847 & 3,436024 \\ \hline48 & 2,561682 & 248 & 3,087846 & 448 & 3,259504 & 648 & 3,362785 & 848 & 3,436344 \\ \hline49 & 2,568836 & 249 & 3,089042 & 449 & 3,260137 & 649 & 3,363210 & 849 & 3,436663 \\ \hline50 & 2,575829 & 250 & 3,090232 & 450 & 3,260767 & 650 & 3,363635 & 850 & 3,436982 \\ \hline51 & 2,582669 & 251 & 3,091418 & 451 & 3,261397 & 651 & 3,364060 & 851 & 3,437300 \\ \hline52 & 2,589362 & 252 & 3,092598 & 452 & 3,262025 & 652 & 3,364483 & 852 & 3,437618 \\ \hline53 & 2,595914 & 253 & 3,093773 & 453 & 3,262651 & 653 & 3,364906 & 853 & 3,437936 \\ \hline54 & 2,602330 & 254 & 3,094943 & 454 & 3,263276 & 654 & 3,365328 & 854 & 3,438253 \\ \hline55 & 2,608616 & 255 & 3,096109 & 455 & 3,263900 & 655 & 3,365750 & 855 & 3,438570 \\ \hline56 & 2,614777 & 256 & 3,097269 & 456 & 3,264522 & 656 & 3,366171 & 856 & 3,438886 \\ \hline57 & 2,620817 & 257 & 3,098425 & 457 & 3,265142 & 657 & 3,366591 & 857 & 3,439203 \\ \hline58 & 2,626741 & 258 & 3,099575 & 458 & 3,265761 & 658 & 3,367010 & 858 & 3,439518 \\ \hline59 & 2,632553 & 259 & 3,100721 & 459 & 3,266379 & 659 & 3,367429 & 859 & 3,439833 \\ \hline60 & 2,638257 & 260 & 3,101862 & 460 & 3,266995 & 660 & 3,367847 & 860 & 3,440148 \\ \hline61 & 2,643857 & 261 & 3,102998 & 461 & 3,267610 & 661 & 3,368265 & 861 & 3,440463 \\ \hline62 & 2,649357 & 262 & 3,104130 & 462 & 3,268223 & 662 & 3,368681 & 862 & 3,440777 \\ \hline63 & 2,654759 & 263 & 3,105257 & 463 & 3,268835 & 663 & 3,369097 & 863 & 3,441091 \\ \hline64 & 2,660067 & 264 & 3,106379 & 464 & 3,269445 & 664 & 3,369513 & 864 & 3,441404 \\ \hline65 & 2,665285 & 265 & 3,107496 & 465 & 3,270054 & 665 & 3,369927 & 865 & 3,441717 \\ \hline66 & 2,670415 & 266 & 3,108610 & 466 & 3,270662 & 666 & 3,370342 & 866 & 3,442030 \\ \hline67 & 2,675460 & 267 & 3,109718 & 467 & 3,271268 & 667 & 3,370755 & 867 & 3,442342 \\ \hline68 & 2,680422 & 268 & 3,110822 & 468 & 3,271873 & 668 & 3,371168 & 868 & 3,442653 \\ \hline69 & 2,685304 & 269 & 3,111922 & 469 & 3,272476 & 669 & 3,371580 & 869 & 3,442965 \\ \hline70 & 2,690110 & 270 & 3,113017 & 470 & 3,273078 & 670 & 3,371991 & 870 & 3,443276 \\ \hline71 & 2,694840 & 271 & 3,114108 & 471 & 3,273679 & 671 & 3,372402 & 871 & 3,443587 \\ \hline72 & 2,699497 & 272 & 3,115195 & 472 & 3,274278 & 672 & 3,372812 & 872 & 3,443897 \\ \hline73 & 2,704083 & 273 & 3,116277 & 473 & 3,274876 & 673 & 3,373221 & 873 & 3,444207 \\ \hline74 & 2,708601 & 274 & 3,117355 & 474 & 3,275473 & 674 & 3,373630 & 874 & 3,444516 \\ \hline75 & 2,713052 & 275 & 3,118429 & 475 & 3,276068 & 675 & 3,374038 & 875 & 3,444825 \\ \hline76 & 2,717438 & 276 & 3,119498 & 476 & 3,276662 & 676 & 3,374446 & 876 & 3,445134 \\ \hline77 & 2,721761 & 277 & 3,120563 & 477 & 3,277255 & 677 & 3,374853 & 877 & 3,445442 \\ \hline78 & 2,726023 & 278 & 3,121625 & 478 & 3,277846 & 678 & 3,375259 & 878 & 3,445750 \\ \hline79 & 2,730225 & 279 & 3,122682 & 479 & 3,278436 & 679 & 3,375664 & 879 & 3,446058 \\ \hline80 & 2,734369 & 280 & 3,123735 & 480 & 3,279024 & 680 & 3,376069 & 880 & 3,446365 \\ \hline81 & 2,738456 & 281 & 3,124784 & 481 & 3,279612 & 681 & 3,376474 & 881 & 3,446672 \\ \hline82 & 2,742488 & 282 & 3,125828 & 482 & 3,280198 & 682 & 3,376877 & 882 & 3,446979 \\ \hline83 & 2,746467 & 283 & 3,126869 & 483 & 3,280782 & 683 & 3,377280 & 883 & 3,447285 \\ \hline84 & 2,750393 & 284 & 3,127906 & 484 & 3,281365 & 684 & 3,377683 & 884 & 3,447591 \\ \hline85 & 2,754268 & 285 & 3,128939 & 485 & 3,281948 & 685 & 3,378084 & 885 & 3,447896 \\ \hline86 & 2,758094 & 286 & 3,129968 & 486 & 3,282528 & 686 & 3,378485 & 886 & 3,448201 \\ \hline87 & 2,761871 & 287 & 3,130993 & 487 & 3,283108 & 687 & 3,378886 & 887 & 3,448506 \\ \hline88 & 2,765600 & 288 & 3,132015 & 488 & 3,283686 & 688 & 3,379286 & 888 & 3,448810 \\ \hline89 & 2,769283 & 289 & 3,133032 & 489 & 3,284263 & 689 & 3,379685 & 889 & 3,449114 \\ \hline90 & 2,772921 & 290 & 3,134046 & 490 & 3,284839 & 690 & 3,380084 & 890 & 3,449417 \\ \hline91 & 2,776515 & 291 & 3,135056 & 491 & 3,285413 & 691 & 3,380482 & 891 & 3,449721 \\ \hline92 & 2,780066 & 292 & 3,136062 & 492 & 3,285986 & 692 & 3,380879 & 892 & 3,450023 \\ \hline93 & 2,783575 & 293 & 3,137065 & 493 & 3,286558 & 693 & 3,381276 & 893 & 3,450326 \\ \hline94 & 2,787043 & 294 & 3,138064 & 494 & 3,287129 & 694 & 3,381672 & 894 & 3,450628 \\ \hline95 & 2,790470 & 295 & 3,139059 & 495 & 3,287698 & 695 & 3,382068 & 895 & 3,450930 \\ \hline96 & 2,793858 & 296 & 3,140050 & 496 & 3,288266 & 696 & 3,382463 & 896 & 3,451231 \\ \hline97 & 2,797208 & 297 & 3,141038 & 497 & 3,288833 & 697 & 3,382857 & 897 & 3,451532 \\ \hline98 & 2,800520 & 298 & 3,142022 & 498 & 3,289399 & 698 & 3,383251 & 898 & 3,451833 \\ \hline99 & 2,803795 & 299 & 3,143003 & 499 & 3,289963 & 699 & 3,383644 & 899 & 3,452133 \\ \hline100 & 2,807034 & 300 & 3,143980 & 500 & 3,290527 & 700 & 3,384036 & 900 & 3,452433 \\ \hline101 & 2,810238 & 301 & 3,144954 & 501 & 3,291089 & 701 & 3,384428 & 901 & 3,452733 \\ \hline102 & 2,813407 & 302 & 3,145924 & 502 & 3,291650 & 702 & 3,384820 & 902 & 3,453032 \\ \hline103 & 2,816542 & 303 & 3,146891 & 503 & 3,292209 & 703 & 3,385210 & 903 & 3,453331 \\ \hline104 & 2,819644 & 304 & 3,147854 & 504 & 3,292768 & 704 & 3,385600 & 904 & 3,453629 \\ \hline105 & 2,822714 & 305 & 3,148814 & 505 & 3,293325 & 705 & 3,385990 & 905 & 3,453927 \\ \hline106 & 2,825752 & 306 & 3,149771 & 506 & 3,293881 & 706 & 3,386379 & 906 & 3,454225 \\ \hline107 & 2,828758 & 307 & 3,150724 & 507 & 3,294436 & 707 & 3,386767 & 907 & 3,454523 \\ \hline108 & 2,831734 & 308 & 3,151674 & 508 & 3,294990 & 708 & 3,387155 & 908 & 3,454820 \\ \hline109 & 2,834680 & 309 & 3,152620 & 509 & 3,295543 & 709 & 3,387542 & 909 & 3,455117 \\ \hline110 & 2,837597 & 310 & 3,153563 & 510 & 3,296094 & 710 & 3,387929 & 910 & 3,455413 \\ \hline111 & 2,840485 & 311 & 3,154503 & 511 & 3,296644 & 711 & 3,388315 & 911 & 3,455709 \\ \hline112 & 2,843344 & 312 & 3,155440 & 512 & 3,297193 & 712 & 3,388700 & 912 & 3,456005 \\ \hline113 & 2,846176 & 313 & 3,156373 & 513 & 3,297741 & 713 & 3,389085 & 913 & 3,456300 \\ \hline114 & 2,848980 & 314 & 3,157303 & 514 & 3,298288 & 714 & 3,389469 & 914 & 3,456595 \\ \hline115 & 2,851757 & 315 & 3,158230 & 515 & 3,298834 & 715 & 3,389853 & 915 & 3,456890 \\ \hline116 & 2,854509 & 316 & 3,159154 & 516 & 3,299378 & 716 & 3,390236 & 916 & 3,457184 \\ \hline117 & 2,857234 & 317 & 3,160075 & 517 & 3,299922 & 717 & 3,390619 & 917 & 3,457478 \\ \hline118 & 2,859934 & 318 & 3,160992 & 518 & 3,300464 & 718 & 3,391001 & 918 & 3,457772 \\ \hline119 & 2,862609 & 319 & 3,161907 & 519 & 3,301005 & 719 & 3,391382 & 919 & 3,458065 \\ \hline120 & 2,865260 & 320 & 3,162818 & 520 & 3,301545 & 720 & 3,391763 & 920 & 3,458358 \\ \hline121 & 2,867887 & 321 & 3,163726 & 521 & 3,302084 & 721 & 3,392143 & 921 & 3,458651 \\ \hline122 & 2,870490 & 322 & 3,164631 & 522 & 3,302622 & 722 & 3,392523 & 922 & 3,458943 \\ \hline123 & 2,873070 & 323 & 3,165534 & 523 & 3,303159 & 723 & 3,392902 & 923 & 3,459235 \\ \hline124 & 2,875627 & 324 & 3,166433 & 524 & 3,303694 & 724 & 3,393281 & 924 & 3,459527 \\ \hline125 & 2,878162 & 325 & 3,167329 & 525 & 3,304229 & 725 & 3,393659 & 925 & 3,459818 \\ \hline126 & 2,880674 & 326 & 3,168222 & 526 & 3,304762 & 726 & 3,394036 & 926 & 3,460109 \\ \hline127 & 2,883165 & 327 & 3,169112 & 527 & 3,305294 & 727 & 3,394413 & 927 & 3,460400 \\ \hline128 & 2,885635 & 328 & 3,170000 & 528 & 3,305826 & 728 & 3,394790 & 928 & 3,460690 \\ \hline129 & 2,888084 & 329 & 3,170884 & 529 & 3,306356 & 729 & 3,395166 & 929 & 3,460980 \\ \hline130 & 2,890512 & 330 & 3,171766 & 530 & 3,306885 & 730 & 3,395541 & 930 & 3,461269 \\ \hline131 & 2,892919 & 331 & 3,172644 & 531 & 3,307413 & 731 & 3,395916 & 931 & 3,461559 \\ \hline132 & 2,895307 & 332 & 3,173520 & 532 & 3,307940 & 732 & 3,396290 & 932 & 3,461848 \\ \hline133 & 2,897675 & 333 & 3,174393 & 533 & 3,308466 & 733 & 3,396663 & 933 & 3,462136 \\ \hline134 & 2,900024 & 334 & 3,175263 & 534 & 3,308991 & 734 & 3,397036 & 934 & 3,462425 \\ \hline135 & 2,902353 & 335 & 3,176131 & 535 & 3,309514 & 735 & 3,397409 & 935 & 3,462713 \\ \hline136 & 2,904664 & 336 & 3,176995 & 536 & 3,310037 & 736 & 3,397781 & 936 & 3,463000 \\ \hline137 & 2,906957 & 337 & 3,177857 & 537 & 3,310559 & 737 & 3,398152 & 937 & 3,463287 \\ \hline138 & 2,909231 & 338 & 3,178716 & 538 & 3,311079 & 738 & 3,398523 & 938 & 3,463574 \\ \hline139 & 2,911488 & 339 & 3,179572 & 539 & 3,311599 & 739 & 3,398894 & 939 & 3,463861 \\ \hline140 & 2,913726 & 340 & 3,180426 & 540 & 3,312118 & 740 & 3,399264 & 940 & 3,464147 \\ \hline141 & 2,915948 & 341 & 3,181277 & 541 & 3,312635 & 741 & 3,399633 & 941 & 3,464433 \\ \hline142 & 2,918152 & 342 & 3,182125 & 542 & 3,313152 & 742 & 3,400002 & 942 & 3,464719 \\ \hline143 & 2,920339 & 343 & 3,182970 & 543 & 3,313667 & 743 & 3,400370 & 943 & 3,465004 \\ \hline144 & 2,922510 & 344 & 3,183813 & 544 & 3,314182 & 744 & 3,400738 & 944 & 3,465289 \\ \hline145 & 2,924665 & 345 & 3,184653 & 545 & 3,314695 & 745 & 3,401105 & 945 & 3,465574 \\ \hline146 & 2,926803 & 346 & 3,185491 & 546 & 3,315208 & 746 & 3,401471 & 946 & 3,465859 \\ \hline147 & 2,928925 & 347 & 3,186326 & 547 & 3,315719 & 747 & 3,401838 & 947 & 3,466143 \\ \hline148 & 2,931032 & 348 & 3,187158 & 548 & 3,316229 & 748 & 3,402203 & 948 & 3,466426 \\ \hline149 & 2,933123 & 349 & 3,187988 & 549 & 3,316739 & 749 & 3,402568 & 949 & 3,466710 \\ \hline150 & 2,935199 & 350 & 3,188815 & 550 & 3,317247 & 750 & 3,402933 & 950 & 3,466993 \\ \hline151 & 2,937260 & 351 & 3,189640 & 551 & 3,317755 & 751 & 3,403297 & 951 & 3,467276 \\ \hline152 & 2,939307 & 352 & 3,190462 & 552 & 3,318261 & 752 & 3,403660 & 952 & 3,467558 \\ \hline153 & 2,941338 & 353 & 3,191282 & 553 & 3,318767 & 753 & 3,404023 & 953 & 3,467840 \\ \hline154 & 2,943356 & 354 & 3,192099 & 554 & 3,319271 & 754 & 3,404386 & 954 & 3,468122 \\ \hline155 & 2,945359 & 355 & 3,192914 & 555 & 3,319775 & 755 & 3,404748 & 955 & 3,468404 \\ \hline156 & 2,947347 & 356 & 3,193726 & 556 & 3,320277 & 756 & 3,405109 & 956 & 3,468685 \\ \hline157 & 2,949323 & 357 & 3,194536 & 557 & 3,320779 & 757 & 3,405470 & 957 & 3,468966 \\ \hline158 & 2,951284 & 358 & 3,195343 & 558 & 3,321280 & 758 & 3,405831 & 958 & 3,469246 \\ \hline159 & 2,953232 & 359 & 3,196148 & 559 & 3,321779 & 759 & 3,406191 & 959 & 3,469527 \\ \hline160 & 2,955167 & 360 & 3,196950 & 560 & 3,322278 & 760 & 3,406550 & 960 & 3,469807 \\ \hline161 & 2,957088 & 361 & 3,197750 & 561 & 3,322776 & 761 & 3,406909 & 961 & 3,470086 \\ \hline162 & 2,958997 & 362 & 3,198548 & 562 & 3,323272 & 762 & 3,407267 & 962 & 3,470366 \\ \hline163 & 2,960893 & 363 & 3,199343 & 563 & 3,323768 & 763 & 3,407625 & 963 & 3,470645 \\ \hline164 & 2,962776 & 364 & 3,200136 & 564 & 3,324263 & 764 & 3,407983 & 964 & 3,470923 \\ \hline165 & 2,964647 & 365 & 3,200927 & 565 & 3,324757 & 765 & 3,408340 & 965 & 3,471202 \\ \hline166 & 2,966506 & 366 & 3,201715 & 566 & 3,325250 & 766 & 3,408696 & 966 & 3,471480 \\ \hline167 & 2,968352 & 367 & 3,202501 & 567 & 3,325742 & 767 & 3,409052 & 967 & 3,471758 \\ \hline168 & 2,970186 & 368 & 3,203285 & 568 & 3,326233 & 768 & 3,409407 & 968 & 3,472035 \\ \hline169 & 2,972009 & 369 & 3,204066 & 569 & 3,326724 & 769 & 3,409762 & 969 & 3,472312 \\ \hline170 & 2,973820 & 370 & 3,204845 & 570 & 3,327213 & 770 & 3,410117 & 970 & 3,472589 \\ \hline171 & 2,975619 & 371 & 3,205622 & 571 & 3,327701 & 771 & 3,410471 & 971 & 3,472866 \\ \hline172 & 2,977407 & 372 & 3,206397 & 572 & 3,328189 & 772 & 3,410824 & 972 & 3,473142 \\ \hline173 & 2,979184 & 373 & 3,207169 & 573 & 3,328675 & 773 & 3,411177 & 973 & 3,473418 \\ \hline174 & 2,980949 & 374 & 3,207939 & 574 & 3,329161 & 774 & 3,411530 & 974 & 3,473694 \\ \hline175 & 2,982704 & 375 & 3,208707 & 575 & 3,329646 & 775 & 3,411882 & 975 & 3,473969 \\ \hline176 & 2,984448 & 376 & 3,209473 & 576 & 3,330130 & 776 & 3,412233 & 976 & 3,474244 \\ \hline177 & 2,986180 & 377 & 3,210236 & 577 & 3,330613 & 777 & 3,412584 & 977 & 3,474519 \\ \hline178 & 2,987903 & 378 & 3,210997 & 578 & 3,331095 & 778 & 3,412935 & 978 & 3,474793 \\ \hline179 & 2,989615 & 379 & 3,211757 & 579 & 3,331576 & 779 & 3,413285 & 979 & 3,475067 \\ \hline180 & 2,991316 & 380 & 3,212514 & 580 & 3,332056 & 780 & 3,413634 & 980 & 3,475341 \\ \hline181 & 2,993007 & 381 & 3,213268 & 581 & 3,332535 & 781 & 3,413983 & 981 & 3,475615 \\ \hline182 & 2,994688 & 382 & 3,214021 & 582 & 3,333014 & 782 & 3,414332 & 982 & 3,475888 \\ \hline183 & 2,996360 & 383 & 3,214772 & 583 & 3,333491 & 783 & 3,414680 & 983 & 3,476161 \\ \hline184 & 2,998021 & 384 & 3,215520 & 584 & 3,333968 & 784 & 3,415028 & 984 & 3,476434 \\ \hline185 & 2,999672 & 385 & 3,216267 & 585 & 3,334444 & 785 & 3,415375 & 985 & 3,476706 \\ \hline186 & 3,001314 & 386 & 3,217011 & 586 & 3,334919 & 786 & 3,415722 & 986 & 3,476978 \\ \hline187 & 3,002946 & 387 & 3,217753 & 587 & 3,335393 & 787 & 3,416068 & 987 & 3,477250 \\ \hline188 & 3,004569 & 388 & 3,218493 & 588 & 3,335866 & 788 & 3,416414 & 988 & 3,477521 \\ \hline189 & 3,006182 & 389 & 3,219231 & 589 & 3,336339 & 789 & 3,416759 & 989 & 3,477792 \\ \hline190 & 3,007787 & 390 & 3,219968 & 590 & 3,336810 & 790 & 3,417104 & 990 & 3,478063 \\ \hline191 & 3,009382 & 391 & 3,220702 & 591 & 3,337281 & 791 & 3,417448 & 991 & 3,478334 \\ \hline192 & 3,010968 & 392 & 3,221434 & 592 & 3,337751 & 792 & 3,417792 & 992 & 3,478604 \\ \hline193 & 3,012545 & 393 & 3,222164 & 593 & 3,338220 & 793 & 3,418136 & 993 & 3,478874 \\ \hline194 & 3,014113 & 394 & 3,222892 & 594 & 3,338688 & 794 & 3,418479 & 994 & 3,479144 \\ \hline195 & 3,015672 & 395 & 3,223618 & 595 & 3,339155 & 795 & 3,418821 & 995 & 3,479414 \\ \hline196 & 3,017223 & 396 & 3,224342 & 596 & 3,339622 & 796 & 3,419163 & 996 & 3,479683 \\ \hline197 & 3,018765 & 397 & 3,225064 & 597 & 3,340087 & 797 & 3,419505 & 997 & 3,479952 \\ \hline198 & 3,020299 & 398 & 3,225784 & 598 & 3,340552 & 798 & 3,419846 & 998 & 3,480220 \\ \hline199 & 3,021824 & 399 & 3,226502 & 599 & 3,341016 & 799 & 3,420186 & 999 & 3,480488 \\ \hline200 & 3,023341 & 400 & 3,227218 & 600 & 3,341479 & 800 & 3,420527 & 1.000 & 3,480756 \\ \hline\end{tabular}

 

 

A planilha desenvolvida para esse procedimento encontra-se disponível abaixo.

Saneamento da amostra pelo critério de Chauvenet

 

Fontes:
LIMA, Marcelo Rossi de Camargo. Engenharia de avaliações aplicada em propriedades rurais: tratamento científico e por fatores: perícias em desapropriações e servidões. São Paulo: Editora Leud, 2021.

NASSER JÚNIOR, Radegaz. Avaliação de bens: princípios básicos e aplicações. 3. ed. São Paulo: Editora Leud, 2019.
THOFEHRN, Ragnar. Avaliação de terrenos urbanos: por fórmulas matemáticas. São Paulo: Pini, 2008.